The Path Resistance Method For Bounding The Smallest Nontrivial Eigenvalue Of A Laplacian

نویسندگان

  • Stephen Guattery
  • Frank Thomson Leighton
  • Gary L. Miller
چکیده

We introduce the path resistance method for lower bounds on the smallest nontrivial eigenvalue of the Laplacian matrix of a graph. The method is based on viewing the graph in terms of electrical circuits; it uses clique embeddings to produce lower bounds on λ2 and star embeddings to produce lower bounds on the smallest Rayleigh quotient when there is a zero Dirichlet boundary condition. The method assigns priorities to the paths in the embedding; we show that, for an unweighted tree T , using uniform priorities for a clique embedding produces a lower bound on λ2 that is off by at most an O(log diameter(T )) factor. We show that the best bounds this method can produce for clique embeddings are the same as for a related method that uses clique embeddings and edge lengths to produce bounds.

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Cs-621 Theory Gems

In Lecture 10, we introduced a fundamental object of spectral graph theory: the graph Laplacian, and established some of its basic properties. We then focused on the task of estimating the value of eigenvalues of Laplacians. In particular, we proved the Courant-Fisher theorem that is instrumental in obtaining upper-bounding estimates on eigenvalues. Today, we continue by showing a technique – s...

متن کامل

Existence of at least one nontrivial solution for a class of problems involving both p(x)-Laplacian and p(x)-Biharmonic

We investigate the existence of a weak nontrivial solution for the following problem. Our analysis is generally bathed on discussions of variational based on the Mountain Pass theorem and some recent theories one the generalized Lebesgue-Sobolev space. This paper guarantees the existence of at least one weak nontrivial solution for our problem. More precisely, by applying Ambrosetti and Rabinow...

متن کامل

Graph Embeddings and Laplacian Eigenvalues

Graph embeddings are useful in bounding the smallest nontrivial eigenvalues of Laplacian matrices from below. For an n×n Laplacian, these embedding methods can be characterized as follows: The lower bound is based on a clique embedding into the underlying graph of the Laplacian. An embedding can be represented by a matrix Γ; the best possible bound based on this embedding is n/λmax(Γ Γ). Howeve...

متن کامل

Existence and multiplicity of nontrivial solutions for‎ ‎$p$-Laplacian system with nonlinearities of concave-convex type and‎ ‎sign-changing weight functions

This paper is concerned with the existence of multiple positive‎ ‎solutions for a quasilinear elliptic system involving concave-convex‎ ‎nonlinearities‎ ‎and sign-changing weight functions‎. ‎With the help of the Nehari manifold and Palais-Smale condition‎, ‎we prove that the system has at least two nontrivial positive‎ ‎solutions‎, ‎when the pair of parameters $(lambda,mu)$ belongs to a c...

متن کامل

Λ∞, Vertex Isoperimetry and Concentration

In an important paper, Alon [2] derived a Cheeger–type inequality [8], by bounding from below the second smallest eigenvalue of the Laplacian of a finite undirected graph by a function of a (vertex) isoperimetric constant. More precisely, let G=(V,E) be a finite, undirected, connected graph, and let λ2(G) denote twice (for reasons explained below) the smallest non-zero eigenvalue of the Laplaci...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:
  • Combinatorics, Probability & Computing

دوره 8  شماره 

صفحات  -

تاریخ انتشار 1999